Abstract

The aromatic heterocycle 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene reacts with a series of silanes, germanes and stannanes, with weaker E-H bonds reacting in an increasingly facile manner. All react by 1,4-addition to give bicyclic products with diastereomeric ratios varying with the substrate. Density functional theory (DFT) calculations show that activation of the E-H bond occurs across the 1,4-C/P axis of the triphosphabenzene, with the small energetic differences with respect to the stereochemistry of the addition offering insight into the experimentally observed diastereomeric ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.