Abstract

ObjectivesTo evaluate the effects of the etching with different hydrofluoric acid (HF) concentrations on the cyclic load-to-failure (CLf) of machined lithium disilicate crowns cemented to dentin analogue material. MethodsPairs of dentin analogue prosthetic preparations and lithium disilicate ceramic crowns with simplified and standardized designs were machined (n=18). The preparations were etched with 10% HF (60s), followed by primer application. The intaglio surface of the ceramic crowns was treated as follows: non-etched (control, CTRL); or etched for 20s with different HF concentrations — 3% (HF3), or 5% (HF5), or 10% (HF10). A silane coating was then applied onto the treated ceramic surfaces, and they were adhesively cemented to the preparations. To perform the fatigue tests (staircase approach), a hemispheric stainless-steel piston (Ø=40mm) applied cyclic loads in the center of the crowns under water (initial load: 720N; step-size: 70N; cycles: 500,000; frequency: 20Hz). Additionally, topographic, fractographic, and fractal analyses were carried out. The fatigue data were analyzed using the Dixon and Mood method. ResultsAlthough the topographic and fractal analyses depicted the action of HF etching altering the superficial complexity and topography, the preponderant topography pattern was established by machining on CAD/CAM. All groups showed similar CLf (in N) (CTRL=805.00±91.23; HF3=781.25±29.87; HF5=755.00±154.49; HF10=833.75±100.74). SignificanceEtching with different HF acid concentrations did not promote a deleterious effect on the cyclic load-to-failure of machined lithium disilicate crowns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call