Abstract
A linear three-dimensional problem of hydroelastic wave diffraction by a bottom-mounted circular cylinder is analysed. The fluid is of finite depth and is covered by an ice sheet, which is clamped to the cylinder surface. The ice stretches from the cylinder to infinity in all lateral directions. The hydroelastic behaviour of the ice sheet is described by linear elastic plate theory, and the fluid flow by a potential flow model. The two-dimensional incident wave is regular and has small amplitude. An analytical solution of the coupled problem of hydroelasticity is found by using a Weber transform. We determine the ice deflection and the vertical and horizontal forces acting on the cylinder and analyse the strain in the ice sheet caused by the incident wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.