Abstract

This paper is concerned with the hydroelastic response of pontoon-type, very large floating structures (VLFS) with a hinge or semi-rigid line connection. For the hydroelastic analysis, water is modeled as an ideal fluid and its motion is assumed to be irrotational so that a velocity potential exists. The VLFS is modeled by a plate according to the Mindlin plate theory. In order to decouple the fluid-structure interaction problem, the modal expansion method is adopted for the hydroelastic analysis that is carried out in the frequency domain. The boundary element method is used to solve the Laplace equation together with the fluid boundary conditions for the velocity potential, whereas the finite element method is adopted for solving the deflection of the floating plate. This study examines the effect of the rotational stiffness and the location of such a semi-rigid line connection on the hydroelastic response. Hinge and semi-rigid line connections are found to be effective in reducing hydroelastic response of VLFS, depending on the wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call