Abstract

Presented herein are the hydroelastic responses of a floating fuel storage module under wave action. The box-like fuel storage module is modeled by an equivalent solid plate. For the analysis, a non-conforming quadratic-serendipity (NC-QS) element based on the Mindlin plate theory was developed. In this element, we make use of the reduced integration method and the superposition of non-conforming modes onto the basis function of the 8-node element in order to prevent spurious modes and shear locking phenomena. Thus the element may be applied for both thick and thin plates. The solution for the hydroelastic response involves solving the coupled plate–water equation and the water equation numerically using the hybrid finite element–boundary element (FE-BE) method. The coupled plate–water equation is derived by equating the force term in the Mindlin plate equation with the wave pressure distribution obtained from the linearized Bernoulli equation; whereas the boundary integral equation relates the displacement of the plate and water velocity potential using the free-surface Green’s function. Results of the displacement and water velocity potential are found to be more accurate when compared with existing solutions for special cases. Moreover, the stress resultants computed are significantly more accurate than previous results as spurious modes are eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call