Abstract
In the current paper, numerical simulations of Fluid structure interaction (FSI) of a SP (Surface Piercing) hydrofoil are conducted in order to study the influence of elasticity on the initial water entry ventilation. Using ANSYS multi physics solvers, two-way FSI analyses are conducted by the implicit coupled URANS (Unsteady Reynolds averaged Navier–Stokes) equations and finite element method. Numerical result is validated by the well known rigid and elastic wedge water entry problems. Subsequently, computational results are presented for different velocity ratios range [0.38, 0.64] and elasticity factor range [0, 4]. Similar to the Surface Piercing Propeller (SPP), performance curves of a wedge water entry are defined. The obtained similar trend of propeller and wedge performance curves in fully ventilated, transition, and partially cavitated operation modes shows that the adopted approach (2D-study) can be appropriate for future related studies. FSI simulation results indicate that structural deformation can highly affect the location of transition point and shifts it toward the fully ventilated part at high Froude number and elasticity factor. The overall efficiency loss due to increase of foil elasticity is observed and overshoot time of the foil deformation related to the variation of Froude number and elasticity factor, is evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.