Abstract

We derive hydrodynamics of a prototypical one-dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients-the hardcore interaction and the competing mechanisms of short- and long-range hopping. We calculate two density-dependent transport coefficients-the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to particle-number fluctuation by an Einstein relation. In the limit of infinite-range hopping, the model exhibits, upon tuning density ρ (or activity), a "superfluidlike" transition from a finitely conducting fluid phase to an infinitely conducting "superfluid" phase, characterized by a divergence in conductivity χ(ρ)∼(ρ-ρ_{c})^{-1} with ρ_{c} being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and thus induces "giant" number fluctuations in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.