Abstract

We derive hydrodynamics of a prototypical one-dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients-the hardcore interaction and the competing mechanisms of short- and long-range hopping. We calculate two density-dependent transport coefficients-the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to particle-number fluctuation by an Einstein relation. In the limit of infinite-range hopping, the model exhibits, upon tuning density ρ (or activity), a "superfluidlike" transition from a finitely conducting fluid phase to an infinitely conducting "superfluid" phase, characterized by a divergence in conductivity χ(ρ)∼(ρ-ρ_{c})^{-1} with ρ_{c} being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and thus induces "giant" number fluctuations in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call