Abstract
AbstractThe hydrodynamic characteristics of upflow anaerobic sludge blanket (UASB) reactors were investigated in this study. A UASB reactor was visualized as being set‐up of a number of continuously stirred tank reactors (CSTRs) in series. An increasing‐sized CSTRs (ISC) model was developed to describe the hydrodynamics of such a bioreactor. The gradually increasing tank size in the ISC model implies that the dispersion coefficient decreased along the axial of the UASB reactor and that its hydrodynamic behavior was basically dispersion‐controlled. Experimental results from both laboratory‐scale H2‐producing and full‐scale CH4‐producing UASB reactors were used to validate this model. Simulation results demonstrate that the ISC model was better than the other models in describing the hydrodynamics of the UASB reactors. Moreover, a three‐dimensional computational fluid dynamics (CFD) simulation was performed with an Eulerian‐Eulerian three‐phase‐fluid approach to visualize the phase holdup and to explore the flow patterns in UASB reactors. The results from the CFD simulation were comparable with those of the ISC model predictions in terms of the flow patterns and dead zone fractions. The simulation results about the flow field further confirm the discontinuity in the mixing behaviors throughout a UASB reactor. © 2008 American Institute of Chemical Engineers AIChE J, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.