Abstract

Considerable effort has been directed towards the characterization of chiral mesoscale structures, as shown in chiral protein assemblies and carbon nanotubes. Here, we establish a thermally driven hydrodynamic description for the actuation and separation of mesoscale chiral structures in a fluid medium. Cross-flow of a Newtonian liquid with a thermal gradient gives rise to an effective torque that propels each particle of a chiral suspension according to its handedness. In turn, the chiral suspension alters the liquid flow, which thus acquires a transverse (chiral) velocity component. Since observation of the predicted effects requires a low degree of sophistication, our work provides an efficient and inexpensive approach to test and calibrate chiral particle propulsion and separation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.