Abstract

Experiments were carried out in a half-column incorporating auxiliary flow, introduced through up to five slots along a 60° conical base, in addition to a central flow of air. The column had a diameter of 0.15 m and inlet diameters of either 19 or 25 mm. Three different types of particle were investigated, all with mean particle sizes in the 2 – 4 mm range. Four different flow regimes — fixed bed, spouting with aeration, spout-fluidization and jet in a fluidized bed — were identified and mapped. The minimum total gas flow required for spouting with aeration and for spout-fluidization was always greater than that corresponding to minimum spouting. Gas percolation through the annulus increased by as much as 50% as the proportion of auxiliary flow was increased for a given total gas flow rate. Solids circulation was increased somewhat by addition of auxiliary flow for deep beds, but a decrease occurred for shallow beds. The overall bed pressure drop under minimum spouting with aeration conditions increased linearly with auxiliary flow. On the other hand, the fountain height decreased as the fraction of auxiliary flow was increased for a fixed total gas flow, and increased with auxiliary flow for a fixed central gas flow. The empirical correlation of McNab predicted the average spout diameter well if the sum of the central and auxiliary flows was used in the correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.