Abstract
Motivated by recent simulations and by experiments on aggregation of gliding bacteria, we study a model of the collective dynamics of self-propelled hard rods on a substrate in two dimensions. The rods have finite size, interact via excluded volume, and their dynamics is overdamped by the interaction with the substrate. Starting from a microscopic model with nonthermal noise sources, a continuum description of the system is derived. The hydrodynamic equations are then used to characterize the possible steady states of the systems and their stability as a function of the particles packing fraction and the speed of self-propulsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.