Abstract

The reactive absorption of CO 2 into concentrated KOH solutions was studied in an external-loop, gas-lift reactor. Three different inlet gas compositions were used: air, 50–50 vol% air–CO 2, and pure CO 2. The downcomer liquid velocity and the axial profile of the cross-sectionally averaged gas holdup in the riser were measured. The reaction is so fast that the CO 2 is consumed appreciably along the riser, and this causes a significant reduction in the liquid circulation relative to a system with no reaction. A one-dimensional, pseudo-steady-state model has been developed to describe the interactions of hydrodynamics, mass transfer, and chemical reaction for the bubbly flow regime in the riser. The model considers mass transfer from the gas to the liquid phase and its enhancement due to the chemical reaction, and is based on the spatially averaged equations of continuity, momentum, and macroscopic mechanical energy. The rate of liquid circulation, and the axial variation of gas holdup, gas composition, pressure, and gas and liquid velocity, are predicted. The gas/liquid mass transfer coefficient and the bubble radius at the sparger, neither of which was known a priori, were used to minimize the error of the data with respect to the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.