Abstract
Cell motility is crucial to biological functions ranging from wound healing to immune response. The physics of cell crawling on a substrate is by now well understood, whilst cell motion in bulk (cell swimming) is far from being completely characterized. We present here a minimal model for pattern formation within a compressible actomyosin gel, in both 2D and 3D, which shows that contractility leads to the emergence of an actomyosin droplet within a low density background. This droplet then becomes self-motile for sufficiently large motor contractility. These results may be relevant to understand the essential physics at play in 3D cell swimming within compressible fluids. We report results of both 2D and 3D numerical simulations, and show that the compressibility of actomyosin plays an important role in the transition to motility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.