Abstract

The hydrodynamics of an annulus airlift reactor (AALR) was studied and compared with that of a slurry bubble column reactor (SBCR) with silica sands of 75–125 μm in size as solids, city tapping water as liquid phase, and air as gas phase in the present investigation. The effects of superficial gas velocity and solids concentration on gas holdup and solids distributions were investigated. The results showed that the local average gas holdup decreased along the column height, and the average gas holdup decreased with the increasing solids concentration, but this tendency became less at higher solids concentrations. It was found that the effect of superficial gas velocity on axial solids distribution was negligible over the gas velocity range investigated, as long as the solids in the column could be suspended. Increasing solids concentration led to flatter axial solids holdup profiles. The axial distributions of solids concentration and gas holdup in the AALR were much more uniform than those in the SBCR, and slurry circulation in the AALR damped the effects of increasing solids concentration on the hydrodynamics. These advantages of an AALR over a SBCR are especially important for some catalytic reaction processes in three-phase systems such as Fischer–Tropsch synthesis and methanol synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call