Abstract

Based on the combustion characteristics of petroleum coke, a coupled gas–solid fluidized bed combustor is proposed in this work. The overall circulating system of the fluidized bed mainly consists of a dense-phase airlift loop section and a dilute-phase riser section. In different operating conditions, the particle flow behaviors in the airlift loop section were investigated systematically by using optical fiber probe. The experimental results show that the airlift loop section can be divided into four regions, namely, the draft tube, the annulus, the bottom region and the particle diffluence region, in which the average cross-sectional solids fraction and the particle velocity are different. The overall solids fraction difference between the draft tube and the annulus provides a driving force for particle circulation flow in the airlift loop section, and the driving force increases with increasing the superficial gas velocity in the draft tube. The ratio of the particle mass flux in the annulus to that in the riser ranges from 8 to 16. The particle circular velocity in the annulus also increases with increasing the superficial gas velocity in the draft tube. Moreover, a model about the particle circular velocity is established on the basis of energy equilibrium principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.