Abstract

We study the hydrodynamic forces acting on a fixed particle close to a corrugated wall experiencing tangential fluid flow, using the lattice Boltzmann method. To carry out a fundamental analysis, a single two-dimensional circular particle near a sinusoidal wall is selected as a case study. The influence of the particle distance from the wall, the particle Reynolds number, corrugation amplitude, and downstream particle position (relative to a corrugation-peak) on the drag, lift and torque acting on the particle are investigated. Our simulations reveal that the hydrodynamic forces change significantly by changing the particle distance from the wall. Even the direction of forces and torque may change, depending on the distance from the wall, downstream particle position and Rep number. We find an increase in magnitude of forces and torque by increasing the corrugation amplitude of the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.