Abstract

Abstract In this work, the effect of inlet-gas superficial velocity over the circulation liquid velocity, gas holdup and mass transfer, from an airlift bioreactor with settler were studied by Computational Fluid Dynamics (CFD) modeling and contrasted with experimental results. Multiphase mixture model and κ-ε turbulence model were used to describe the two phases gas-liquid flow pattern in airlift bioreactor. The hydrodynamic parameters such as liquid circulation velocity and gas holdup were computed by solving the governing equations of continuity, moment and turbulence transport using the finite volume method. Global mass transfer coefficient was evaluated through the Higbie’s penetration theory and the two-phase fluid dynamic theory. Comparison between our numerical data and experimental data previously reported in the literature was done. Numerical and experimental data were very close, and the differences found were discussed in terms of the limitations of this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.