Abstract
By the method of averaging over the ensemble of turbulent flow realizations, averaged heat transfer equations for a solid phase and a flow as a whole are derived. Closed expressions for the second single-point moments of the solid and carrier phase velocity and temperature fluctuations in terms of the second moments of the carrier phase velocity and temperature fluctuations in a non-uniform turbulent flow are found. Based on these expressions, a set of equations is written for the second single-point moments of the liquid phase velocity and temperature fluctuations in the presence of particles. Heat transfer calculations are carried out for turbulent flow of gas suspension in circular tubes. The effect of the relationship between the thermal and physical properties of the particle material and gas on the thermal characteristics of a two-phase flow is investigated. The predicted Nusselt numbers for a dusty flow agree satisfactorily with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.