Abstract

We continue our investigations on the relation between hydrodynamic and higher quasinormal modes in the AdS black hole background started in arXiv:0710.4458 [hep-th]. As is well known, the quasinormal modes can be interpreted as the poles of the retarded Green functions of the dual N=4 gauge theory at finite temperature. The response to a generic perturbation is determined by the residues of the poles. We compute these residues numerically for energy-momentum and R-charge correlators. We find that the diffusion modes behave in a similar way: at small wavelengths the residues go over into a form of a damped oscillation and therefore these modes decouple at short distances. The sound mode behaves differently: its residue does not decay and at short wavelengths this mode behaves as the higher quasinormal modes. Applications of our findings include the definition of hydrodynamic length and time scales. We also show that the quasinormal modes, including the hydrodynamic diffusion modes, obey causality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.