Abstract

Improved designs for underwater manipulators are becoming increasingly important due to their utility in academic and industrial applications. In this work, an experiment was conducted in conjunction with a numerical simulation to investigate the hydrodynamic performance and structural reliability of the proposed foldable arm during the unfolding process at various movement velocities. A large-scale geometric model of the foldable arm with a single degree of freedom (DOF) was constructed. The distribution of the flow field, the movement stability and the equivalent stress of the foldable arm were quantitatively analyzed with a designed tank experiment and the Computational Fluid Dynamics (CFD) simulation. Simulation results show that the maximum deviation of the resistance and torque is 8.04% and 5.73%, respectively, compared with the experimental results of static postures. Comparison results prove the reliability of the numerical model. The results of transient simulation demonstrate that the optimal speed of the foldable arm is 3 Kn and the pressure distribution on the surface of foldable arm is relatively regular. Furthermore, a fluid–structure interaction (FSI) validation study of the foldable arm was presented. For the coupling between the fluid and structural mechanics domains, a nonmatching discretization approach was adopted. The results show that the directional deformation (Z axis) of the foldable arm is less than 0.50 mm. The proposed foldable arm has a large angle of rotation and high stability compared to the existing manipulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.