Abstract

In this work we develop a method for fluid dynamically driven assembly in three dimensions and demonstrate its applicability to the development of programmable matter. Towards this end, we investigate docking of a single block onto a larger structure using detailed numerical simulations and experiments. Our simulation results show that a block whose degrees of freedom are limited is able to align parallel with the docking site, a necessary condition for successful assembly, whereas an unconfined block could not. Experiments with blocks that were designed with this approach confirmed alignment parallel with the docking site in 97% of trials. To generate alignment in the other two planes, we designed blocks that self-align due to geometric interactions. We also introduced a pulsating flow to increase the probability of aligned assembly. Using this strategy, a 54% successful (fully aligned) assembly rate was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.