Abstract

Objective: The aim of the present study was to increase the absolute bioavailability of famotidine, enhanced patient compliance in the treatment of peptic ulcer by increasing its gastric residence time and controlled local release of drug upto 12 hours. Materials and Methods: Hydrodynamically balanced capsules of famotidine were prepared, consisting of floating matrix granules, which formed hydrogels. Effects of different formulation variables namely hypromellose (HPMC 4000 cps, HPMC 5600 cps, HPMC 15000 cps), effervescent agent (potassium bicarbonate) and mixing time were studied. Optimization study included 23 full factorial design with t50% and t80% as the kinetic parameters (response variable). Matrix characterization included scanning electron microscopy. All prepared formulations were evaluated to various parameters such as micromeritics properties, % buoyancy and in vitro drug release studies. Results and Discussion: The optimized formulation (F4) remains buoyant for more than 12 hrs. The in-vitro drug release study indicated that increasing the viscosity of HPMC resulted in sustained drug release with long floating duration. SEM studies showed definite entrapment of the drug in the matrix and hydrogel formation. Results showed a pH independent but polymer viscosity dependent drug release profile. The release kinetics followed Higuchi model and mechanism of release was found to be non-Fickian diffusion. Conclusion: Famotidine-loaded hydrodynamically balanced capsules were successfully prepared and prove to be useful for prolonged gastric residence of the drug, better bioavailability, patient compliance and improve delivery for enhanced anti-ulcer activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call