Abstract

Hydrodynamical winds from a spherical two-temperature plasma surrounding a compact object are constructed. The mass-loss rate is computed as a function of electron temperature, optical depth and luminosity of the sphere, the values of which can be constrained by the fitting of the spectral energy distributions for known X-ray binary systems. The sensitive dependence of the mass loss rate with these parameters leads to the identification of two distinct regions in the parameter space separating wind-dominated from non wind dominated systems. A critical optical depth, tau_c, as a function of luminosity and electron temperature, is defined which differentiates these two regions. Systems with optical depths significantly smaller than tau_c are wind-dominated. The results are applied to black hole candidate X-ray binary systems in the hard spectral state (Cyg X-1, GX 339-4 and Nova Muscae), and it is found that the inferred optical depth (tau) is similar to tau_c suggesting that they are wind regulated systems. On the other hand, for X-ray binary systems containing a neutron star (e.g., Cyg X-2) tau is much larger than tau_c indicating the absence of significant hydrodynamical winds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call