Abstract

ABSTRACT Suzaku X-ray observations of the Type Ia supernova remnant (SNR) 3C 397 discovered exceptionally high mass ratios of Mn/Fe, Ni/Fe, and Cr/Fe, consistent with a near MCh progenitor white dwarf (WD). The Suzaku observations have established 3C 397 as our best candidate for a near-MCh SNR Ia, and opened the way to address additional outstanding questions about the origin and explosion mechanism of these transients. In particular, subsequent XMM–Newton observations revealed an unusually clumpy distribution of iron group elemental (IGE) abundances within the ejecta of 3C 397. In this paper, we undertake a suite of two-dimensional hydrodynamical models, varying both the explosion mechanism – either deflagration-to-detonation (DDT), or pure deflagration – WD progenitors, and WD progenitor metallicity, and analyse their detailed nucleosynthetic abundances and associated clumping. We find that pure deflagrations naturally give rise to clumpy distributions of neutronized species concentrated towards the outer limb of the remnant and confirm DDTs have smoothly structured ejecta with a central concentration of neutronization. Our findings indicate that 3C 397 was most likely a pure deflagration of a high central density WD. We discuss a range of implications of these findings for the broader SN Ia progenitor problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.