Abstract

We present numerical simulations of the generation, evolution, and radio emission of superluminal components in relativistic jets. We perform the fluid dynamical calculations using a relativistic time-dependent code based on a high-resolution shock-capturing scheme, and then we calculate the radio emission by integrating the transfer equations for synchrotron radiation. These simulations show that a temporary increase in the flow velocity at the base of the jet produces a moving perturbation that contains both a forward and a reverse shock and is trailed by a rarefaction. The perturbation appears in the simulated maps as a region of enhanced emission moving downstream at a superluminal apparent velocity. Interactions of the perturbation with the underlying steady jet result in changes in the internal brightness distribution of the superluminal component, which are manifested as low-level fluctuations about the long-term evolution of both the apparent velocity and the exponential decay of the light curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.