Abstract

We construct the hydrodynamic theory of coherent collective motion ("flocking") at a solid-liquid interface. The polar order parameter and concentration of a collection of "active" (self-propelled) particles at a planar interface between a passive, isotropic bulk fluid and a solid surface are dynamically coupled to the bulk fluid. We find that such systems are stable, and have long-range orientational order, over a wide range of parameters. When stable, these systems exhibit "giant number fluctuations," i.e., large fluctuations of the number of active particles in a fixed large area. Specifically, these number fluctuations grow as the 3/4th power of the mean number within the area. Stable systems also exhibit anomalously rapid diffusion of tagged particles suspended in the passive fluid along any directions in a plane parallel to the solid-liquid interface, whereas the diffusivity along the direction perpendicular to the plane is nonanomalous. In other parameter regimes, the system becomes unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call