Abstract

Ambient water currents were altered by the morphology of an active suspension feeder, Phoronopsis viridis Hilton (phylum Phoronida), to produce a flow around its ciliated crown of feeding tentacles (lophophore). To test the effects of specific morphological characteristics on patterns of water movement, the morphology of model phoronids was varied and the resultant paths of water movement were compared to those around living phoronids. Living individuals were collected from the intertidal sandflats at Bodega Bay, California/USA, in the springs of 1984 and 1985. Although P. viridis actively produce a feeding current, use of various models demonstrated that the gross pattern of flow around a living phoronid was created by the physical interaction of its morphology with ambient currents. The important aspects of that morphology were the presence of a wide, porous crown of tentacles atop a cylindrically-shaped body. A hydrodynamic consequence of this morphology was that dye eroded off the substratum from a circular area around the base of the body and entrained upwards into the lophophore. In addition, rates of water movement were slowed at the lophophore and near the substratum adjacent to a phoronid, particles were slowed and diverted from horizontal paths immediately downstream of the lophophore, and the number of visible suspended particles within the wake per unit time increased with ambient velocity. Paths of water movement around a phoronid were also influenced by its angle and height relative to the substratum, indicating that P. viridis could behaviorally modify their local flow environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.