Abstract

A novel combined airlift loop fluidized bed reactor was proposed in this work. The internal and external loops were combined and the hydrodynamic parameters like minimum fluidization velocity and liquid holdup were studied for Newtonian and non-Newtonian fluids. Studies were conducted using Newtonian fluids of water, n-butanol, 60% and 80% glycerol and non - Newtonian fluids such as 0.25%, 0.6% and 1.0% Carboxy Methyl Cellulose (CMC) aqueous solutions were employed in the liquid phases. Spheres, Bearl saddle and Raschig ring with different sizes were used as solid phase. The experimental results indicated that the increase in particle size and sphericity increased minimum fluidization velocity whereas increase in superficial gas velocity decreased minimum fluidization velocity. In addition, the liquid holdup increased with increase in particle size and superficial liquid velocity. Furthermore, an increase in superficial gas velocity decreased the liquid holdup for Newtonian and non-Newtonian systems. Two separate correlations were developed to predict the minimum fluidization velocity and liquid holdup based on the experimental results for both Newtonian and non-Newtonian liquids for a wide range of operating conditions. The capability of the proposed correlation for minimum fluidization velocity and liquid holdup was examined and reasonable agreement between predicted and experimental results of Newtonian and non-Newtonian liquids suggested the applicability of the proposed correlations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call