Abstract

We present simulated results of a unitraveling-carrier photodiode (UTC-PD) using the hydrodynamic carrier transportation model. A maximum responsivity of 0.25 A/W and a small-signal 3-dB bandwidth of 52 GHz were obtained for a 220-nm-thick InGaAs absorption layer. The physical properties of the UTC-PD have been investigated at different optical injection levels. Modulation of the energy-band profile due to the space charge effect has been observed at high injection level, and an electron velocity overshoot of 3 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> cm/s has been found to effectively delay the onset of space charge effects. Comparisons with reported simulated results using the drift-diffusion model as well as reported experimental results are presented. The results suggest the necessity of using the hydrodynamic transport equations to accurately model the UTC-PD. In addition, it has been corroborated that the photoresponse of the UTC-PD could be improved by incorporating a graded doping profile in the absorption layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call