Abstract

We performed SPH simulations to study the nuclear morphology of a barred galaxy NGC 4314. We have constructed the mass models based on the results of a profile decomposition into disk, bulge, and bar components. Our models have three different nuclear structures according to the assumption about the nuclear bar: no nuclear bar, a synchronous nuclear bar and a fast nuclear bar. Our SPH simulations show that the morphology of the nuclear region of NGC 4314 which is characterized by an elongated ring/spiral of newly formed stars and HII regions, aligned nearly parallel to the primary bar can be understood in terms of the secular evolution driven by the non-axisymmetric potential. The slightly elongated and aligned nuclear ring of NGC 4314 can be formed by the strong barred potential and the moderate central concentration of the bulge mass with and without a nuclear bar. However, the nuclear spiral pattern can not be developed without a nuclear bar. The nuclear bar of NGC 4314 seems to rotate faster than the primary bar since the nuclear morphology induced by the synchronous nuclear bar is much different from the observed one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.