Abstract

While hydrodynamic interactions for aggregates of swimmers have received significant attention in the low Reynolds number realm ($Re\ll 1$), there has been far less work at higher Reynolds numbers, in which fluid and body inertia are involved. Here we study the collective behaviour of multiple self-propelled plates in tandem configurations, which are driven by harmonic flapping motions of identical frequency and amplitude. Both fast modes with compact configurations and slow modes with sparse configurations were observed. The Lighthill conjecture that orderly configurations may emerge passively from hydrodynamic interactions was verified on a larger scale with up to eight plates. The whole group may consist of subgroups and individuals with regular separations. Hydrodynamic forces experienced by the plates near their multiple equilibrium locations are all springlike restoring forces, which stabilize the orderly formation and maintain group cohesion. For the cruising speed of the whole group, the leading subgroup or individual plays the role of ‘leading goose’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.