Abstract

In the present study, the numerical investigation is performed to analyse the hydrodynamic performance of circular and concentric arrangements of cone-cylinder-type heaving point absorber wave energy converter (WEC) around a Frustum Tension-Leg Platform (FTLP) based on potential flow theory. The responses of the single FTLP and the FTLP-WEC hybrid system are analysed for the rated wind speed of a 5 MW wind turbine to observe the influence of the WECs on wind power absorption of wind turbines supported on FTLP. The presence of the FTLP floating wind turbine platform and other WECs affects the hydrodynamic coefficients of the WEC. The influence of the hybrid system on the hydrodynamic coefficients is analysed on determining the ratio of the hydrodynamic coefficients for a single WEC system to those for a hybrid system. Further, the study analyses the instantaneous wave power absorption for the WECs arranged around the FTLP in a circular and concentric pattern. The hydraulic power take-off for the hybrid system with two different control strategies is then discussed to improve the wave power absorption of the WECs. The study observed higher wave power absorption of the WECs with the influence of the PTO system. The mean interaction factor and the capture width ratio of the hybrid system are further studied to understand the influence of array arrangement for the WECs. The hybrid system is noted to have favourable dynamic responses for different environmental factors and contributes positively in increasing power output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.