Abstract

Using a generalized Madelung transformation, we derive the hydrodynamic representation of the Dirac equation in arbitrary curved space-times coupled to an electromagnetic field. We obtain Dirac–Euler equations for fermions involving a continuity equation and a first integral of the Bernoulli equation. Comparing between the Dirac and Klein–Gordon equations we obtain the balance equation for fermion particles. We also use the correspondence between fermions and bosons to derive the hydrodynamic representation of the Weyl equation which is a chiral form of the Dirac equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.