Abstract

In this paper hydrodynamic processes arisen in the silica under laser action are analyzed numerically. Exactly these processes determine the development of fracture of optical fiber under the action of high-intense laser beams. The mathematical model describing the wave processes inside the core and cover of an optical fiber is proposed. It is shown that the basic mechanism of high-speed fracture wave propagation is related to the plasma expansion into the cold silica. At the same time, the transverse waves define the development of the plasma bubble and as a result the destruction of the optical fiber core. Obtained hydrodynamic mechanisms are basic for a wide class of scenarios related to the interaction of high-energy fluxes with solid medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.