Abstract

Laser drilling is a complex process that involves material removal through both vaporization and hydrodynamic melt ejection. The process is further complicated when an assist gas is incorporated, which is often the case under most practical drilling conditions. It is the intent of this article to investigate these effects through both experiments and theoretical analysis. The analysis accounts for conduction in the solid, vaporization, vaporization-induced recoil pressure melt ejection, convection due to the melt flow as well as the effects of using an O2 assist gas, which includes the effective assist gas pressure exerted on the melt surface, the forced convection cooling and the additional energy generated due to the oxidation of the melt surface by O2. The effects of the absorbed laser intensity on the melt surface temperature, melt ejection velocity and drilling velocity were studied for both cases of laser drilling with and without O2 assist gas and compared to experimental results obtained for EN3 low carbon steel. The dependence of threshold time on the absorbed laser intensity for either vaporization-dominated or melt ejection-dominated (hydrodynamic-dominated) material removal was studied and subsequently related to the threshold conditions for spatter formation. The model was subsequently optimized by examining the significance of the O2 effects considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call