Abstract

Theory and computations are applied to assess the hydrodynamic permeability of cavity- doped hydrogels, central to a variety range of contemporary technological applications. Direct volume-averaging is undertaken in a two-dimensional, Brinkman-hydrodynamic context to test an ensemble-averaging methodology recently proposed for the ion permeability of such media. In two dimensions, the ensemble-averaging integral furnishes a pre-factor $2$ linking the pressure dipole strength of a single inclusion in an unbounded continuum to the effective hydrodynamic permeability of a composite with small inclusion area fraction. The factor is verified by direct computations for dilute simple-square arrays of (cylindrical) inclusions. At area fractions up to the close-packing limit, computations address the hydrodynamic interactions. The theory is shown to accurately predict the effective hydrodynamic permeability of physically relevant composites (Brinkman length of the continuous phase $\ell$ smaller than the inclusion radius $a$ ) for area fractions $\phi \lesssim {\rm \pi}/ 9 \approx 0.3$ . Computations for random ensembles demonstrate that the dilute theory may be extended to higher area fractions by drawing on Rayleigh's self-consistent approximation when the continuous-phase permeability places the continuous-phase flow well into the Darcy regime ( $a / \ell \gtrsim 10$ ). Computations also demonstrate, similarly to Rayleigh theories for scalar diffusion, that microstructural order has a very weak influence on the effective permeability when $\phi \lesssim {\rm \pi}/ 9$ with $\ell / a \lesssim 1$ (Darcy hydrodynamic interactions). Finally, a cursory examination is undertaken of the fluid velocity and its fluctuations arising from shear-viscosity heterogeneity in media with perfectly uniform permeability $\ell ^2$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call