Abstract

The behaviour of arrays of 12 heaving point absorbers in concentric arrangements is numerically assessed in a frequency domain model. The floaters are attached to a central cylindrical bottom-mounted structure. Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off system consisting of an external damping coefficient enabling power extraction and a supplementary mass coefficient tuning the point absorber to the incoming waves. The external damping and supplementary mass coefficients are optimized to maximize the power absorption by each floater in the array, with a restriction on the total control force that can be applied on the floaters. Various concentric arrangements with different radii and number of concentric circles are analysed to determine the most efficient among them. Moreover, the influence of the presence of a central bottom-mounted pillar and the effect of change in its dimension and shape on the power absorption are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.