Abstract

Abstract A simple mathematical model of fluid flow is applied to determine the cross-sectional shape of a coaxial ground heat exchanger (CGHE) for which the friction pressure drop is minimal. Both laminar and turbulent flows of a Newtonian fluid are analyzed. The dimensionless form of the friction pressure losses is taken as the objective function, and the dimensionless internal diameter and wall thickness of the inner tube is adopted as decision variables, with the reference length taken to be the internal diameter of the external pipe. The resulting optimization problem is solved by means of a hybrid analytical-numerical method. The obtained solutions are generalized as two simple equations valid for laminar and turbulent flows, respectively. It is shown that the pressure losses in a coaxial ground heat exchanger with optimal cross section may be considerably smaller than the pressure losses for a nonoptimal one. The obtained results are significant for the global optimization of CGHEs, resulting in improved energy conservation of buildings and district heating systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.