Abstract

Here, a numerical optimization procedure is proposed for a fundamental study of a fast catamaran, and we compare the wave-making characteristics of a catamaran hull form with and without large bow and stern airship-type bulbs installed on the center plane of a catamaran operating at high speed. The method involves coupled ideas from two distinct research fields: numerical ship hydrodynamics and a nonlinear programming technique. The wave-making characteristics of catamaran hulls with and without bulbs were investigated using the panel method applied to free surface flow (PAFS), in which Morino’s method for lifting bodies is extended to analyze the problem of free surface flow, and PAFS is linked to the optimization procedure of the sequential quadratic programming (SQP) technique. An optimum hull form for a catamaran can be obtained through a series of iterative computations, subject to some design constraints. Here, only the hull shape of a catamaran is optimized with and without center-plane bow and stern bulbs. The optimization is carried out at two Froude numbers, 0.45 and 0.5, which are around the last hump of the wave-making resistance curve. The numerical results show that a reduction in wave-making resistance is achieved around the design speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call