Abstract

We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200mm long plasma channels with axial densities of order n_{e}(0)=1×10^{17}cm^{-3} and lowest-order modes of spot size W_{M}≈40μm. These simulations show that the laser energy required to generate the channels is modest: of order 1mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5×10^{17}cm^{-3}≲n_{e}(0)≲1×10^{18}cm^{-3} and 61μm≳W_{M}≳33μm. Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.