Abstract

The polydisperse behaviors of a binary ultralight–heavy mixture particle flow in a swirling axisymmetric chamber were investigated based on a developed second-order-moment gas–particle turbulent model. A binary particle Reynolds stress transport equation to depict the anisotropic interactions between gas-mixture particles and binary ultralight–heavy particles was established to close the governing equations. Hydrodynamic parameters, including particle number density, particle and gas velocities, and fluctuation velocities, Reynolds stress tensors, and their invariants, turbulent kinetic energy, and vortex structure, are numerically simulated. The detailed effects of the density, the diameter of the particle, the Stokes number, and the ultralight particle mass loading ratios on the flow status were studied. It is shown that normal and shear Reynolds stresses and kinetic turbulent energies of mixture particles have been redistributed, particularly, they are very sensitive to the mass loading ratios. Higher particle mass loading ratios enhanced the anisotropic characteristics. The particle number density at central regions of the farthest downstream is approximately three times larger than those of smaller mass loading ratios. Larger Stokes number particles reinforced the axial fluctuations up to 1.2 times that of the light particles, whereas ultralight particles increased tangential fluctuation to 2.5 times for axial ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.