Abstract

Movement of the contact line over a solid surface violates the adherence, or “no slip,” boundary condition which is otherwise obeyed by flowing liquids. A flat fluid interface moving steadily over a flat solid is modeled with the creeping flow approximation, which turns out to be self-consistent. Adherence is required except at the contact line itself. Though the velocity field appears to be realistic, stresses and viscous dissipation are found to increase without bound at the contact line. The way the hydrodynamic model breaks down suggests that in reality there may be steep gradients, rheological anomalies, and discontinuous processes around the contact line. Slip and the role of long-range forces are explored with the aid of the lubrication flow approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.