Abstract
A hydrodynamic lubrication model of a flux channel was established for a continuous casting mould with non-sinusoidal oscillation. A new experimental apparatus was developed simultaneously for analysing the lubrication mechanism. A mixed oil, which was simulated mould flux, was poured and infiltrated into the channel, and the flux consumption was determined in the process of oscillation. Based on the combination of analytical calculation and cold model experiment, the flux channel is divided into two parts to clarify the behaviours of flux infiltration and shell deformation. The results show that oscillation marks and surface cracks are formed at the bottom of the meniscus during the negative and positive strip time respectively. Meanwhile, the liquid flux is periodically infiltrated into the channel by negative pressure below the meniscus because the cyclic movement of the shell lags behind the mould oscillation. The casting performances were improved by increasing the non-sinusoidal oscillation factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.