Abstract

A theoretical analysis based on the two dimensional isothermal Reynolds equation was developed for the hydrodynamic lubrication of the tube spinning process. The linear velocity of the forming tool and rotational velocity of the mandrel both influence the establishment of a hydrodynamic lubricant film thickness at the inlet zone. Formation of a hydrodynamic lubricant film thickness at the inside of the tube is ruled by the eccentricity of the mandrel and tube. The theoretical and experimental estimates of film thickness were compared and are in agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.