Abstract
The hydrodynamic limit of the Ginzburg–Landau ∇ϕ interface model was derived in Funaki and Spohn (1997) and Nishikawa (2003) for strictly convex potentials. This paper deals with non-convex potentials under suitable assumptions on the free energy and identification of the extremal Gibbs measures which have been recently established at sufficiently high temperature in Cotar and Deuschel (2012). Because of the non-convexity, many difficulties arise, especially, on the identification of equilibrium states. We show the equivalence between the stationarity and the Gibbs property under quite general settings, and we complete the identification of equilibrium states. We also establish some uniform estimates for variances of extremal Gibbs measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.