Abstract
Under partial confinement, the motion of colloidal particles is restricted to a plane or a line but their dynamics is influenced by hydrodynamic interactions mediated by the unconfined, three-dimensional flow of the embedding fluid. We demonstrate that this dimensionality mismatch induces a characteristic divergence in the collective diffusion coefficient of the colloidal subsystem. This result, independent of the specific interparticle forces in the colloid, is solely due to the kinematical constraint on the colloidal particles, and it is different from the known divergence of transport coefficients in purely one or two-dimensional fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.