Abstract
We investigate how hydrodynamic interactions between Brownian particles influence the performance of a fluctuating ratchet. For this purpose, we perform Brownian dynamics simulations of particles that move in a toroidal trap under the influence of a sawtooth potential which fluctuates between two states (on and off). Hydrodynamic interactions are included in the Rotne-Prager approximation. We first consider spatially constant transition rates between the two ratchet states and observe that hydrodynamic interactions significantly increase the mean velocity of the particles but only when they are allowed to change their ratchet states individually. If in addition the transition rate to the off state is localized at the minimum of the ratchet potential, particles form characteristic transient clusters that travel with remarkably high velocities. The clusters form since drifting particles have the ability to push but also pull neighboring particles due to hydrodynamic interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.