Abstract

Infrastructure engineering is impacted by solid particles in fluids, and engineering components are influenced by fluid flow methods. This work explores the effects of dusty fluids with suspended solid particles in a single-walled corrugated channel using electromagnetic hydrodynamics. Potential, continuity, and momentum equations were employed to study the periodic sinusoidal waves in the corrugations of two wavy walls using the perturbation method. We assessed the impact of corrugation on velocity for EMHD fluid flow using mathematical computation, concentrating on the analytical velocity solutions. The analysis of velocity profiles through graphs reveals that corrugation affects fluid and particle velocity behavior, with small amplitude reducing wave effects and dusty particles boosting velocity. The proposed model uses mathematical induction to solve engineering problems using corrugated wall conditions for fluid control during curing stages. It may be valuable for sanitation networks, rainwater drainage networks, and irrigation systems. In the end, a thorough examination of the obtained results and information from past papers demonstrated a high level of agreement. Additionally, its use in the curing of water will offer alternative methods of managing the flowing fluid than mechanical pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.