Abstract

A laboratory and numerical investigation on the features of the horizontal and vertical hydrodynamic loads given by a solitary wave on a submerged square barrier is presented. By the experimental viewpoint, the wave forces were deduced from the records of a discrete battery of pressure sensors located along the external surface of the barrier. As regards the numerical viewpoint, simulations were performed through the SPH model presented in Di Mascio et al. (2017), in which the governing equations are written considering a turbulence closure model. The numerical simulations allowed to extend the range of analyzed cases and highlighted the regions around the submerged barrier of higher dissipation occurring during the wave-structure interaction. A good agreement between the experimental and numerical peaks of the horizontal and vertical forces was found. Afterwards, a semi-analytical scheme able to determine the horizontal loads was adopted using the speed drop factor obtained by physical tests and simulations. For practical purposes, attention was finally paid to determine the critical conditions against the sliding of the barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.